3.511 \(\int \frac{x^2}{(1+x)^{3/2} (1-x+x^2)^{3/2}} \, dx\)

Optimal. Leaf size=23 \[ -\frac{2}{3 \sqrt{x+1} \sqrt{x^2-x+1}} \]

[Out]

-2/(3*Sqrt[1 + x]*Sqrt[1 - x + x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0211387, antiderivative size = 23, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.043, Rules used = {913} \[ -\frac{2}{3 \sqrt{x+1} \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/((1 + x)^(3/2)*(1 - x + x^2)^(3/2)),x]

[Out]

-2/(3*Sqrt[1 + x]*Sqrt[1 - x + x^2])

Rule 913

Int[(x_)^2*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^
(m + 1)*(a + b*x + c*x^2)^(p + 1))/(c*e*(m + 2*p + 3)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[b*e*(m +
p + 2) + 2*c*d*(p + 1), 0] && EqQ[b*d*(p + 1) + a*e*(m + 1), 0] && NeQ[m + 2*p + 3, 0]

Rubi steps

\begin{align*} \int \frac{x^2}{(1+x)^{3/2} \left (1-x+x^2\right )^{3/2}} \, dx &=-\frac{2}{3 \sqrt{1+x} \sqrt{1-x+x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0304251, size = 23, normalized size = 1. \[ -\frac{2}{3 \sqrt{x+1} \sqrt{x^2-x+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/((1 + x)^(3/2)*(1 - x + x^2)^(3/2)),x]

[Out]

-2/(3*Sqrt[1 + x]*Sqrt[1 - x + x^2])

________________________________________________________________________________________

Maple [A]  time = 0.044, size = 18, normalized size = 0.8 \begin{align*} -{\frac{2}{3}{\frac{1}{\sqrt{1+x}}}{\frac{1}{\sqrt{{x}^{2}-x+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(1+x)^(3/2)/(x^2-x+1)^(3/2),x)

[Out]

-2/3/(1+x)^(1/2)/(x^2-x+1)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.47613, size = 23, normalized size = 1. \begin{align*} -\frac{2}{3 \, \sqrt{x^{2} - x + 1} \sqrt{x + 1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(1+x)^(3/2)/(x^2-x+1)^(3/2),x, algorithm="maxima")

[Out]

-2/3/(sqrt(x^2 - x + 1)*sqrt(x + 1))

________________________________________________________________________________________

Fricas [A]  time = 1.74493, size = 62, normalized size = 2.7 \begin{align*} -\frac{2 \, \sqrt{x^{2} - x + 1} \sqrt{x + 1}}{3 \,{\left (x^{3} + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(1+x)^(3/2)/(x^2-x+1)^(3/2),x, algorithm="fricas")

[Out]

-2/3*sqrt(x^2 - x + 1)*sqrt(x + 1)/(x^3 + 1)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\left (x + 1\right )^{\frac{3}{2}} \left (x^{2} - x + 1\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(1+x)**(3/2)/(x**2-x+1)**(3/2),x)

[Out]

Integral(x**2/((x + 1)**(3/2)*(x**2 - x + 1)**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{{\left (x^{2} - x + 1\right )}^{\frac{3}{2}}{\left (x + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(1+x)^(3/2)/(x^2-x+1)^(3/2),x, algorithm="giac")

[Out]

integrate(x^2/((x^2 - x + 1)^(3/2)*(x + 1)^(3/2)), x)